A STUDY ON CREATING GAMES AND VIRTUAL WORLDS FROM A SOFTWARE ENGINEERING PERSPECTIVE

MARK TEE KIT TSUN

A Master's Project submitted in partial fulfilment of the requirements for the degree of Master of Software Engineering

Centre for Graduate Studies
Open University Malaysia

2011
ABSTRACT

The industry of developing games and virtual environments have come a long way, but it is not without its share of problems. In many ways, virtual worlds entail similar development processes as games, as they both require expertise from creative and technical facets. While facing similar difficulties as other commercial projects, creating games presents its own unique challenges due to its multi-disciplinary nature. Because of this, beginner and indie developers face complications in attempting to apply Software Engineering methods (which are efficiently tailored to guide general software projects) to reduce the chance of project failure. This study aimed to examine the construction of games and integrate it into the Software Process. First, the background of game development and Software Engineering were explored, deriving the introductory guides for both. Then, a guidelines draft is developed to offer advice on grafting aspects of the Software Process onto existing game or virtual world projects. They are aimed at independent developers as they represent the future workforce of the game development industry. To test the draft, an experimental project is carried out using the guide as a supplementary resource. The project resulted in a 3D action-RPG game platform that can be used as a starting point for advanced feature placement and content development. It demonstrated that the guidelines were educative but lacks depth and correctness. Revisions on these guidelines will transform it into a stepping stone resource that introduces novice game developers to integrating Software Engineering processes and practices into their projects.

Keywords:

Game Development, Software Engineering
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of Study
1.2 Problem Statement
1.3 Research Question
1.4 Research Objective
1.5 Scope of Study
1.6 Significance of Study

CHAPTER 2 LITERATURE REVIEW

2.1 History of Computer Game Development
2.2 History of Software Engineering
2.3 Overview of Parallels between Software Engineering and Game Development
2.4 Theoretical Framework

CHAPTER 3 RESEARCH METHODOLOGY

3.1 Introduction
3.2 Phase 1 – Data Gathering
3.3 Phase 2 – Analysis
CHAPTER 4 A GUIDE TO GAME DEVELOPMENT

4.1 Introduction 33
4.2 Overview of Game Development 36
4.3 Development Methodology 38
4.4 Game Design 45
4.5 Game Architecture 48
4.6 Game Engine Fundamentals 52
4.7 Content Creation 54
4.8 Conclusion 56

CHAPTER 5 INTRODUCTION TO SOFTWARE ENGINEERING

5.1 Introduction 58
5.2 Process Activities 60
 5.2.1 Software Specifications 60
 5.2.2 Software Development 63
 5.2.3 Software Validation 66
 5.2.4 Software Maintenance 68
5.3 Development Methodologies 69
5.4 Standards for Software Quality and Process Improvement 74
5.5 Conclusion 75

CHAPTER 6 PROPOSED SE-GAME DEVELOPMENT ADAPTATION GUIDE

6.1 Introduction 77
6.2 Guide Overview 78
6.3 Software Engineering for Game Development Guidelines 79
 6.3.1 Phase 1: Initial Planning 79
 6.3.2 Phase 2: Requirements 81
 6.3.3 Phase 3: Implementation 86
6.3.4 Phase 4: Validation 91
6.3.5 Phase 5: Maintenance and Evolution 93
6.4 Conclusion 95

CHAPTER 7 PROJECT REPORT, GUIDELINES ASSESSMENT AND CONCLUSION 96

7.1 Development Project Plan 96
7.2 Technical Development Process 100
7.3 Software Engineering for Games Guidelines Application Review 104
7.4 Conclusion 107

REFERENCES 108

APPENDICES 110

APPENDIX A Historical Timeline of Computer Games and Platforms 111
APPENDIX B Software Engineering Timeline 112
APPENDIX C Project Proposal 113
APPENDIX D Project Feasibility Report 116
APPENDIX E Software Requirements Specifications 118
APPENDIX F Design Models and Diagrams 127
APPENDIX G Initial Project Schedule 133
APPENDIX H Project and Software Manual 134
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Example components separated by categories</td>
<td>33</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Some example items declared under Initial Design and Gradual Refinement</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Difference between DirectX and OpenGL</td>
<td>53</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Some example tasks enlisted under Creative, Technical and Management</td>
<td>83</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Summarized Developer Log</td>
<td>100</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Table 1.1 Feasibility Study Discussion Results</td>
<td>116</td>
</tr>
<tr>
<td>APPENDIX E</td>
<td>Table 1.1 Definitions, acronyms and abbreviations used through the SRS report</td>
<td>118</td>
</tr>
<tr>
<td>APPENDIX G</td>
<td>Table Initial Project Schedule</td>
<td>133</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The software process</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Motion game system architecture</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>General Game-Engine Based Framework</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Hybrid Waterfall-Prototyping model</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>The Prototyping Software Life Cycle Model</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>The Prototyping Process in the Hybrid Model</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>General Games Development Processes</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>The Structured “Water-Fall” Model</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>The Spiral Approach</td>
<td>41</td>
</tr>
<tr>
<td>4.4</td>
<td>The Prototyping Approach</td>
<td>42</td>
</tr>
<tr>
<td>4.5</td>
<td>The Scrum Agile Approach</td>
<td>44</td>
</tr>
<tr>
<td>6.1</td>
<td>Game Development Process</td>
<td>78</td>
</tr>
</tbody>
</table>

APPENDIX A

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Historical Timeline of Computer Games and Platforms</td>
<td>111</td>
</tr>
</tbody>
</table>

APPENDIX B

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Software Engineering Timeline</td>
<td>112</td>
</tr>
</tbody>
</table>

APPENDIX E

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Use Case Diagram showing the classic interface activities found in general action RPG games</td>
<td>121</td>
</tr>
<tr>
<td>2.2</td>
<td>Use Case Diagram showing the classic gameplay activities found in general action RPG games</td>
<td>121</td>
</tr>
<tr>
<td>3.2.1</td>
<td>State Diagram modelling the general states that the game should revolve in, based on reviewing the general structure of commercial game software</td>
<td>124</td>
</tr>
</tbody>
</table>
Figure 3.2.2 Class Diagram describing the conceptual gameplay components as visualized in an object oriented approach 125

APPENDIX F

Figure 6.1.1 State Diagram showing the Level-0 of the game states 127
Figure 6.1.2 Class Diagram derived from the initial conceptual counterpart 128
Figure 6.2.1 Activity Diagram depicting the back-end of the Main Menu 128
Figure 6.2.2 This set of Activity Diagrams visualize the technical mechanics behind each in-game action that can be performed by the Player Character 129
Figure 6.2.3 The second set of Activity Diagrams for In-Game basic actions cover the Character Panel and Barter Interface 129
Figure 6.3.1 The Sequence Diagram for Main Menu selections 130
Figure 6.3.2 The Sequence Diagram depicting the initial design for Dialog and Barter In-Game actions 131
Figure 6.3.3 The Sequence Diagram for Starting a New Game 131
Figure 6.3.4 The Sequence Diagram for Continuing from a Saved Game 132
CHAPTER 1 INTRODUCTION

1.1 Background of Study

This project studies the lifecycle of games and virtual worlds from inception until construction, highlighting the similarities and contrasts between these and conventional software applications. The difference between virtual worlds and games should be made clear first, as a virtual world application consists of the environmental elements that simulate a particular environment (Jakala & Pekkola, 2007). A game is in fact a virtual world that is populated with multimedia content (usually centred on entertainment since the objective of every game). The degree of such content depends on both the developer and the audience. However, for the sake of this discussion and study, the creation process for both will be referred to as games development. While the creation of computer games is technically situated within the realm of general software development, there may be complications in applying software engineering practices to games. This is because the process of assembling one requires a multi-disciplinary approach that melds not just aspects of software development, but also works of literature, entertainment and in some cases, social studies (Diefenbach, 2008). Schedules, budget allocations, team composition and design vary from project to project, and this poses an added factor that increases the chance of software failure (Rabin, 2005). Traditionally, software engineering practices were honed and matured to the point where the industry has benefitted from it greatly, resulting in more timely delivered and higher quality software (Kotonya, 1998). However, the same cannot be said for the games development industry as the variation and dynamic nature of the
process demands guidelines that cannot be contained by the comprehensive software engineering standards. Regardless, this statement does not deem that existing development guidelines and standards are redundant for the creation of games, but more flexible explanations should be made available for game developers in order to understand and adapt the said standards towards producing more passable products in terms of quality and correctness.

1.2 Problem Statement

The cause of such software failure in games development and virtual world projects can be mostly attributed to incorrect, inadequate or non-existent application of software engineering influences (Sommerville, 2007). The target sample in question refers to ‘indie’ or individual developers instead of established development studios because a more stable organization will most likely have access to training and specialists who either homebrew their techniques or advocate effective application of software engineering (Maurina, 2006). An individual developer will be hard pressed to find guidelines for effective development other than online resources and general texts. What are generally missing are directories that point to correct references as well as introductory guidelines on best practices. Therefore, the main problem statement is that ‘games development project failures stem from incorrect, inadequate application of software engineering practices’. This main problem consists of the following sub-problems:

- General software engineering standards and guidelines are formalized to apply to all general purpose application development, but are not usually flexible enough to accommodate the varying requirements of games, simulators and virtual worlds.
Individual developers do not have a wide choice of easily accessible information on game development-specific guidelines and software engineering standards.

Failures still occur even with adequate software engineering resources because there is inadequate number of formal demonstrations on how software engineering practices is adapted to creating games. (Leon, 2004)

1.3 Research Question

In response to the problem statement, the research question for this study is ‘how can software engineering practices be adapted to ‘indie’ games development?’

1.4 Research Objective

The objectives of this study in order to answer the research question, is divided into 3 parts:

- To document the general games development lifecycle in order to set the background on which software engineering practices can be applied
- To study and discern methods to interpret software engineering resources and standards in order to fit portions of the games development lifecycle
- Demonstrate how planning and implementation of adapted software engineering activities can be carried out for a game development project by documenting the process undergone for the construction of a virtual world environment.

1.5 Scope of Study

This study will centre on the process of constructing virtual worlds and games in general as will be undertaken by individual developers instead of software houses. Therefore, the resources outlined therein will be predominantly introductory in depth but adequate for anyone to kick-start a project. The document as well as the
demonstration application will follow the COTS game engine style as this is practiced in general even amongst leading developers. Software engineering standards and techniques that will be covered in the study shall encompass the software development lifecycle, software quality assurance, as well as leading quality assurance standards including CMMI and ISO9001. To satisfy the second objective of this project, a discussion on the adaption of said materials will be done within the scope of general simulation development (excluding entrances to development of graphical, audio and literal content).

The study will not extensively cover every possible method of developing simulators, virtual worlds and games, as the emphasis is on applying software engineering techniques for the purpose of reducing the chance of project failure. Neither will the development of game engines, multimedia content and game design be discussed, although an explanation of each portion in general will be included, as in fulfilment of the first object. Finally, the software development process that will be outlined and applied for the demonstration project will allow variations between several classic methodologies which include the waterfall model, prototyping and Agile development. More recent and popular methodologies such as SCRUM, extreme programming and SAP will not be discussed as each deserves a dedicated branch of the study. The demonstration system will be used a case study for the purpose of illustrating how the software engineering process may be applied in real time. Thus, the end product will be a prototype instead of a full release of an agent simulator environment.

1.6 Significance of Study

Games development has already been accepted as a significant branch of software development, to the point that it has earned dedicated degree programs and specialist
courses throughout the world (Diefenbach, 2008; Goulding & Ditrolio, 2007; Mikami et al., 2009; Ritzhaupt, 2009). Spanning more than just entertainment, it has catered to niche markets that require simulators, virtual reality and projection applications, each demanding more advances as hardware graphics, audio and human interface technology continue to stack up (Jakala & Pekkola, 2007). Even then, resources and guidelines are still rather limited to come by, save for enthusiast websites and largely basic introductory texts that do not break enough grounds to reduce project failures. Software studios have managed to survive only by sheer chance of developing best practices and having a sizeable amount of luck (Keith, 2010). This study will contribute to the rising number of resources that aims to remedy this problem and hopefully assist the games development to achieve higher recognition of significance.
REFERENCES

