BANDWIDTH ALLOCATION FOR WIRED AND WIRELESS CONNECTIONS

BY

RAJANI BALAKRISHNAN

OPEN UNIVERSITY MALAYSIA

Project Paper Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Information Technology

Open University Malaysia (2008)

PERPUSTAKAAN DIGITAL TAN SRI DR ABDULLAH SANUSI OPEN UNIVERSITY MALAYSIA

ABSTRACT

71738

5102.0

This project is a systematic study of "Bandwidth Allocation" in networks. IT comprises of two main strategies of networking namely wired networks and wireless networks. The problem of bandwidth allocation has been extensively studied for wired and wireless domain. But very little attention has been paid for wired-cum-wireless network topologies. This paper focuses on issues that make a wireless scenario different from a wired one. In the project the various algorithm that are used in wireless networks have been discussed and simulation approaches have been done to simulate a communications throughput. Examples of graphical results have been illustrated and compared. A comparison of the important features of wired and wireless networks have been tabulated. The technique of bandwidth allocation is an ever evolving problem, thus many attempts have been made to make bandwidth allocation fair and justifiable. This study will give a good idea about these attempts as well as highlight the issues involved.

TABLE OF CONTENTS

1.	Int	Introduction		
	1.1	Backgrou	ınd of Study	2
		1.1.1	Description of Study	2
		1.1.2	Definition Of Terms Used in Bandwidth Allocation	2
		1.1.3	Bandwidth Allocation	3
		1.1.4	Wired Communication	5
		1.1.5	Networks	5
		1.1.6	Wireless Communications	5
	1.2	Research	1 Problem	5
	1.3	Objectiv	es of Study	6
2.	Lite	erature R	eview	8
	2.1	Types of	Connections	8
		2.1.1	Local Area Networks (LAN)	9
		2.1.2	Metropolitan Area Networks (MAN)	10
		2.1.3	Wide Area Networks (WAN)	10
		2.1.4	Personal Area Networks (PAN)	11
		2.1.5	Campus Area Networks (CAN)	12
		2.1.6	Global Area Networks (MAN)	13
		2.1.7	LAN's, WAN's, GAN's	14
		2.1.8	Summary of Networks	14
	2.2	Commo	n Guided Transmission Media In Wired Network	15
	2.3	A Client	and Provider Set Up	15
	2.4	Topolog	y	16
		2.4.1	Bus Topology	17
		2.4.2	Ring Topology	18
		2.4.3	Star Topology	20
		2.4.4	Mesh Topology	21
		2.4.5	Hybrid Topology	21
		2.4.6	Tree Topology	22
	2.5	Summa	ry of Topologies	22
	2.6	OSI Mo	dels	24

Bandwidth Allocation For Wired and Wireless Connections

	2.6.1	OSI Model Summary	24
2.7	Wirel	ss Communication	25
eri Mili	2.7.1	Examples of Wireless Communication	26
	2.7.2	Wireless Transmission	27
	2.7.3	Common Transmission Media in Wireless Network	28
	2.7.4	Generations of Wireless Technology	29
	2.7.5	Wireless Computer Networking	32
2.8	IEEE	302	32
2.9	Bandv	id th	32
	2.9.1	Network Connectivity	33
	2.9.2	Traffic	34
	2.9.3	Hosting Bandwidth	34
	2.9.4	Bandwidth Efficiency	35
	2.9.5	Bandwidth Management	35
	2.9.6	BAP and BACP.	35
	2.9.7	IP Networks	36
	2.9.8	Multiplexing.	37
Re	search M	ethodology	38
3.1	Researd	h Design	38
3.2	Study P	opulation	38
3.3	Instrum	entation	38
3.4	Data Ar	alysisalysis	39
Dif	fficulties	in wireless networks	40
4.1	The lac	k of Bandwidthk	40
4.2	Handov	er and Routing	41
4.3	Secure (Connection	44
4.4	Reliable	Connection.	45
4.5	The Res	tt	46
4.6	Coverag	jeje	47
4.7	Designii	ig for capacity – A Must for Today's WLAN's	49
4.8	Conclus	ion	50
Bal	ndwidth	Algorithms to overcome the difficulties in wireless networks	51
5.1	Bandw Adapti	idth Algorithm in wireless networks using utility –oriented ve QoS Model	51

ж

4

Bandwidth Allocation For Wired and Wireless Connections

5

4

	5.2 Ha pr	ndovers in wireless ATM networks using In-Band signaling ptocols	55
	5.3 Sw W	arm Based Routing algorithm and Bandwidth Allocation in reless Networks	65
	5.4 Vo In	ronoi diagram and graph search algorithm for coverage problems wireless Ad-hoc sensor networks	68
	5.5 Me net	thods for the transmission of speech inactivity (rest) in wireless works	70
	5.6 Des	gn of High-Capacity Multihop Wireless LAN	80
	5.6 Pa Sei	cket loss performance and MAC Design for Estimation in Wireless Isor Networks	82
6	Perform	nance Analysis of wireless network algorithms	83
	6.1 Ban Tec	dwidth allocation in wireless networks using Multiple Access	83
	6.1	1 FDMA	83
	6.1	2 Time Division Multiple Access	84
	6.1	3 Code Division Multiple Access	85
	6.1	4 Orthogonal Frequency Division Multiplexing	86
	6.1	5 Comparison of FDMA, TDMA, CDMA and OFDM	87
	6.1	6 Result of the Analysis	89
	6.2 Ha	adovers in Wireless Networks	89
	6.2	1 Criteria for efficient handovers for optimal design	90
	6.2	2 Path loss exponent and user velocity dependent variable call handover algorithm	90
	6.2	3 Tri-threshold bandwidth reservation CAC scheme	91
	6.2	4 Uniform pre-establishment algorithm (UPA)	91
	6.2	5 Pre-establishment algorithm with prediction (PAP)	91
	6.2	6 Analysis of Handover algorithm	92
	6.2	7 Result Analysis	93
	6.3 Ro	ıting in wireless networks	94
	6.3	1 Performance Criteria	95
	6.3	2 Various Routing Algorithm	95
	6.3	3 Analysis of routing algorithm	95
	6.3	4 Result Analysis	96
	6.4 Cov	erage in wireless networks	9 7
	6.4	1 Performance Criteria	97

6.4.2	Various Coverage Algorithm				
6.4.3	Result Analysis	98			
5.5 Simulation of Algorithm					
6.6 Conclusion					

Bandwidth Allocation For Wired and Wireless Connections

ъ

CHAPTER 1

INTRODUCTION

1.0 Introduction

Technology in this world is getting better and better nowadays by improving and upgrading the existence of technology, especially in communication system. The word communication is derived from Latin *communicare*, which means "to share". Communication is a process of representing, transforming, interpreting, or processing information among people, places or machines. This process involves a sender, receiver, and transmission medium over which the information flows. The basic conversation between two people occurs when a message transferring when they are communicating. Once the two persons move away from each other, there is no information flows. Thus, for a better transmission medium and also to make sure this communication happens, they must be a proper network system which provides connection from one location to another location.

There are two major categories of technologies in communication, wired and wireless communication. Wired technology means using physical wires to transmit electronic signals over a metal conductor. Wired technology has more reliable ways to transmit and receive the signals and is not affected by other wireless signals. However, wireless technology uses electromagnetic waves to transmit and receive the signals without using physical wires or cordless systems. Thus, wireless technology is growing very fast because of convenient usage.