THE USAGE OF TEACHING COURSEWARE IN TEACHING AND LEARNING OF MATHEMATICS IN SECONDARY SCHOOLS

BY

HON MAY WAN

Project Paper Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Information Technology

Digital Library OUM

Open University Malaysia
(2006)
ABSTRACT

(English)

This study aims to determine the usage of teaching courseware in teaching and learning of Mathematics in secondary schools. A total of 55 teacher data samples and 100 student data samples were taken from schools of Kinta District, Ipoh, Perak. All data was analyzed using the SPSS 11.5 program. The major findings of the study were that the usage level of the teaching courseware by teachers is satisfactory and the learning through Mathematics teaching courseware was well-received by the students. Implication of the study is that Mathematics teaching courseware is an effective tool in the transition period caused by the change of language used in teaching and learning Mathematics.

This project paper should be able to provide us with insights into different aspects related to the usage of the teaching courseware. Hence provide information for further planning and implementation of the teaching courseware usage in future.
TABLE OF CONTENTS

Chapter 1: Introduction
1.1 Overview
1.2 Context of the Study
1.3 Statement of problem
1.3.1 Pedagogy
1.3.2 Contents
1.3.3 Infrastructure
1.3.4 Time
1.3.5 School Administration
1.4 Objective
1.5 Significance of the Study
1.6 Scope of Project

Chapter 2: Literature Review
2.1 Overview
2.2 The Teaching Courseware
2.2.1 Explore the Spiral
2.3 Collaborative Learning
2.3.1 Computer Supported Collaborative Learning
2.4 Computer-Aided Learning in Mathematics
2.5 Teachers as Facilitators of Teaching and Learning
2.5.1 IT Skills of Teachers
2.5.2 Pedagogical Knowledge 16
2.5.3 Teacher Attitude towards Technology 18
2.6 Students as Clients in School 19
 2.6.1 Media and Technology Acceptance by Students 20
2.7 Mathematics Laboratory 21

Chapter 3: Methodology
3.1 Overview 24
3.2 Sample Selection 24
3.3 Instrumentation 25
3.4 Data Collection and Treatment 26

Chapter 4: Results and Analysis
4.1 Overview 28
4.2 Reliability Analysis of Measuring Instrument 28
4.3 Teacher Responses 29
 4.3.1 General Background of Respondents 29
 4.3.2 General Information on the Supplementary Factors in the 33
 Usage of Teaching Courseware.
 4.3.3 The Usage of Teaching Courseware in the process of 35
 teaching
 4.3.4 General Opinions on the Teaching Courseware 39
4.4 Student Responses 41
 4.4.1 General Background of Respondents 41
Chapter 5: Discussion

5.1 Overview

5.2 Teachers and the Usage of Teaching Courseware

5.3 Students and the Usage of Teaching Courseware

5.4 Integration of Teacher and Student Responses

Chapter 6: Conclusion

6.1 Overview

6.2 Conclusion

References

Appendices
LIST OF TABLES

Table 4.1 Reliability analysis of study variables 29
Table 4.2 General responses from teachers 33
Table 4.3 Pearson Chi-Square Test (Teacher responses) 36
Table 4.4 Cross Tabulation – Use teaching courseware in Mathematics lessons and teaching experience 37
Table 4.5 Cross Tabulation – Facility of Mathematics laboratory and venues used for Mathematics lessons using teaching courseware 37
Table 4.6 Cross Tabulation – Exposed to contents of teaching courseware and knowledge of contents of teaching courseware 38
Table 4.7 Cross Tabulation – Exposed to features of teaching courseware and features used in teaching courseware 38
Table 4.8 One-sample statistics - General findings on the teaching courseware (Teacher responses) 39
Table 4.9 One-sample test - General findings on the teaching courseware (Teacher responses) 40
Table 4.10 Venue for Mathematics lessons using teaching courseware 46
Table 4.11 Subjects applying CAL apart from Mathematics 46
Table 4.12 Preference to teaching courseware 47
Table 4.13 Indifference to teaching courseware 48
Table 4.14 Pearson Chi-Square Test (Student responses) 48
Table 4.15 One-sample statistics - General findings on the teaching courseware (Student responses) 49

Table 4.16 One-Sample Test - General findings on the teaching courseware (Student responses) 50

Table 4.17 Cross Tabulation – Language of TC is simple and easy to understand and language used is simple 51

Table 4.18 Cross Tabulation – Units of TC run in an organized way and learning through TC is systematic 51

Table 4.19 Cross Tabulation – TC engages students in active learning and I involve actively in T&L through TC 52

Table 4.20 Cross Tabulation – TC makes lessons interesting and learning through TC is interesting 52

Table 4.21 Cross Tabulation – TC helps to promote ICT and upgrade my computer skill through lessons using TC 53

Table 4.22 Cross Tabulation – TC plays a better role than teachers and I understand better through TC-aided lessons 53

Table 4.23 Pearson Chi-Square between variables (Integration of teacher-student responses) 55
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1</td>
<td>Location of schools (Teacher)</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Gender (Teacher)</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Age in years (Teacher)</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Teaching experience</td>
<td>31</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Composition of teachers teaching various forms (2003-2006)</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Computer literacy (Teacher)</td>
<td>32</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Distribution practice of teaching courseware</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Time teachers received teaching courseware</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Usage of Mathematics teaching courseware in Mathematics lessons</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Location of school (Student)</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Gender (Student)</td>
<td>42</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Age in years (Student)</td>
<td>42</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Proficiency in Mathematics</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>Command of English</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Interest towards CAL</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>Exposure to learning using teaching courseware</td>
<td>45</td>
</tr>
<tr>
<td>Figure 4.17</td>
<td>Frequencies of teaching courseware used weekly</td>
<td>45</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Teachers' Questionnaire</td>
<td>72</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Students' Questionnaire</td>
<td>77</td>
</tr>
<tr>
<td>Appendix C</td>
<td>SPSS Outputs</td>
<td>81</td>
</tr>
<tr>
<td>Appendix C₁</td>
<td>Case processing summary (Teachers)</td>
<td>81</td>
</tr>
<tr>
<td>Appendix C₂</td>
<td>Case processing summary (Student)</td>
<td>82</td>
</tr>
<tr>
<td>Appendix C₃</td>
<td>Trace for violations - data entered out of range (Teacher responses).</td>
<td>83</td>
</tr>
<tr>
<td>Appendix C₄</td>
<td>Trace for violations - data entered out of range (Student responses).</td>
<td>84</td>
</tr>
<tr>
<td>Appendix C₅</td>
<td>Trace for violations – incomplete responses</td>
<td>85</td>
</tr>
<tr>
<td>Appendix C₆</td>
<td>Trace for violations – inconsistency</td>
<td>86</td>
</tr>
<tr>
<td>Appendix C₇</td>
<td>Reliability test output (1)</td>
<td>87</td>
</tr>
<tr>
<td>Appendix C₈</td>
<td>Reliability test output (2)</td>
<td>88</td>
</tr>
<tr>
<td>Appendix C₉</td>
<td>Reliability test output (3)</td>
<td>89</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Overview

In the course of achieving its objectives for the future titled Vision 2020, Malaysia is highly committed in providing education to all and in meeting the goal of producing robust individuals to meet challenges of the competitive world. In June 2002, the Ministry of Education (MoE) Malaysia announced that the teaching and learning of Science and Mathematics would be conducted in English. Teaching and learning of Science and Mathematics in English (TeLeSME) program, more commonly known as PPSMI, *Pengajaran dan Pembelajaran Sains dan Matematik dalam Bahasa Inggeris*, had finally gotten off the ground in 2003 for students of Year 1 primary, Form 1 and Form 6 secondary.

Teachers as the teaching and learning facilitators will play important roles in this new wave of education. Hence, MoE Malaysia had made efforts to provide help and guidance to Science and Mathematics teachers who are less proficient in English. To ensure that teachers of Mathematics and Science acquire basic capacity to use English as the medium of instruction, an imperative measure was taken in due course. The program had started another shift in the teaching and learning of these two subjects. Information and communication technologies were brought in as an